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PHYS-541 - Quantum Computing

Vincenzo Savona
Clemens Giuliani, Sara Alves, Khurshed Fitter

Thursdays 12.9-19.12.2024
Course 13:15-16:00
Exercises 16:15 - 18:00

BS 260

see moodle (PHYS-541)

M. A. Nielsen & I. L. Chuang, Quantum Computation and Quantum
Information (Cambridge, 2011)

John Preskill, Lecture Notes on Quantum Information and Computation
http://theory.caltech.edu/~preskill/ph219/ph219 2019-20
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http://theory.caltech.edu/%7Epreskill/ph219/ph219_2019-20

In October 2019, Google announced quantum supremacy:

A programmable, general-purpose engineered quantum device could perform a
computational task much faster than any existing supercomputer would do

Nature 574, 505 (2019)
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Quantum circuits and algorithms

|
P I- Quantum Computing, V. Savona, Winter 2024 3



The physical nature of information

Information is physical

“Kushim” clay tablet (3400 — 3000 BC) “Quipu” (3000 — 2000 BC)
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The physical nature of information

Information is physical

li//

/
",

wer
I

LI WA

=
—
—
—
—
—
=g
=1
Z
4

Y rrnnn

e

Current information devices are described by the laws of classical physics
Everyday phenomena obey the laws of non-relativistic quantum mechanics
Quantum superposition and entanglement are not used in classical devices

Can these properties result in a more efficient computation paradigm?
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The idea of quantum computing

Time-dependent Schrédinger equation:

[U(t)) = e (0))

Quantum many-body systems are in general computationally untreatable: resources scale
exponentially with the size of the system

“... nature isn’t classical, dammit, and if you want to
make a simulation of nature, you’d better make it
quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

A resource, not a limitation!

Nature executes this specific “computational” task
exponentially faster than classical computers

If we could map a computational task onto [1(t)) = e=*¢|¢(0))
efficiently, we would have a great computational advantage
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Advances in quantum computing
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https://twitter.com/jaygambetta/status/1529489786242744320

Many candidate quantum computing platforms

Superconducting circuits Trapped ions Rydberg atoms

Integrated photonics

Electron (or hole) spin
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Advances in quantum computing

IBM Quantum Computing Roadmap 2024
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Advances in quantum computing

Development roadmap
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PHYSICAL
QUBITS:

PHYSICAL
2-QUBIT
GATE ERROR:

LOGICAL
QUBITS:

LOGICAL
ERROR
RATES:

nnnnnnnnnnn

© 2024 Quantinuum. All Rights Reserved.
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*analysis based on recent literature in new, novel error correcting codes predict that
error could be as low as 1E-10 in Apollo (ref: arXiv:2403.16054, arXiv:2308.07915)
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Advances in quantum computing

QuEra neutral-atom (Rydberg) quantum computer
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Public investment in quantum computing

European Quantum Flagship
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A growing ecosystem

Quantum computer makers

Enterprise use cases

Cross-industry applications
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What can a quantum computer do?

A widespread concept is that of “quantum parallelism”
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A single quantum register can apparently store exponentially more information than a classical one

One operation on the quantum register will be carried out “in parallel” on all stored items

This simple picture of quantum parallelism is not useful. A readout of the quantum register is a quantum
measurement. It will return a random item and destroy the remaining information through state collapse

£

@ readout

) = |

Need for algorithms that use quantum superposition to take advantage of quantum parallelism
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What can a quantum computer do?

Quantum computers can solve some computational problems better than conventional computers

some: A guantum computer is not a universal tool

Among problems with quantum advantage, many have very high societal benefit

better: Quantum advantage is not just “faster”

It is about how computational time scales with problem size
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A quantum algorithm zoo

https://quantumalgorithmzoo.org/

Today there are hundreds of useful quantum algorithms ready for future quantum hardware

Quantum Phase estimation (1995).

Estimate an eigenvalue of a unitary operator with error g, using O(log(1/¢)) qubits and O(1/¢)
operations. Used as a primitive in many algorithms, like Shor or HHL. Simulate energy levels of
complex Hamiltonians efficiently.

Quantum Amplitude estimation / amplification (2000).

Estimate or amplify one component in a given quantum state. Useful primitive in several
algorithms, like e.g. Grover’s algorithm or Quantum accelerated Monte Carlo sampling.

Quantum Fourier Transform (1994).

Compute discrete Fourier transform of 2" amplitudes with complexity O(n?). Primitive ubiquitous in
many computational tasks, from Shor to data science.
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https://quantumalgorithmzoo.org/

A quantum algorithm zoo

https://quantumalgorithmzoo.org/

Today there are hundreds of useful quantum algorithms ready for future quantum hardware

Shor’s algorithm (1994).

Compute a prime factor of a n-qubit integer with O(n? log(n) log(log(n))) gates. Best known classical
algorithm requires exp(O(n'/3 log(n)?3)) time

Grover’s algorithm (1996).

Search an unstructured database of N entries with O(N/2) gates. Best classical algorithm requires
time O(N). There’s proof that O(N/2) is optimal according to quantum mechanics. Evidence that
quantum computers can’t solve NP-complete problems.

Digital quantum simulation (1996).
1Ht

Compute U = ¢~ on n qubits with O(n3log(n)) gates. Classical algorithms are exponential.
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https://quantumalgorithmzoo.org/
https://www.science.org/doi/10.1126/science.273.5278.1073
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A quantum algorithm zoo

https://quantumalgorithmzoo.org/

Today there are hundreds of useful quantum algorithms ready for future quantum hardware

Quantum solution of linear systems of equations (HHL algorithm) (2008).

Estimate (a measurement on) the solution of a linear system of N equations with O(log(N))
complexity. Ubiquitous applications: electromagnetic scattering, linear differential equations, finite
element simulations, least-square fitting, machine learning and data science.

Quantum-accelerated Monte Carlo sampling (2015).

Sample a function of a random variable (st.d. ¢) with accuracy ¢, using O(c/¢) samples, instead of
O(o?/€?). Ubiquitous use in science, and finance (risk analysis, derivative pricing)
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https://quantumalgorithmzoo.org/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502
https://royalsocietypublishing.org/doi/10.1098/rspa.2015.0301

How to deal with errors

Digital electronics is subject to errors (cosmic rays!). Today’s error rate is 10-1° errors/bit/hour

https://en.wikipedia.org/wiki/ECC memory

Errors in digital electronics are not corrected!

https://arstechnica.com/gadgets/2021/01/linus-torvalds-blames-intel-for-lack-of-ecc-ram-in-consumer-pcs/

In quantum computers errors are an issue for two reasons

1. Error rates. One-qubit gate: 3.8x10%; two-qubit gate: 6.4x10°3; one-qubit readout: 6.0x1073
IBM 27-qubit Quantum Falcon Processor, arXiv:2008.08571

2. Error correction requires information readout, which is a destructive process because of
collapse. Need an agnostic error correction scheme

(a)



https://en.wikipedia.org/wiki/ECC_memory
https://arstechnica.com/gadgets/2021/01/linus-torvalds-blames-intel-for-lack-of-ecc-ram-in-consumer-pcs/
https://arxiv.org/abs/2008.08571

How to deal with errors: two roads

Fault-tolerant quantum computing: Correct errors with Quantum Error Correction Codes (QECC)
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Hybrid algorithms on Noisy Intermediate-Scale Quantum (NISQ) hardware: Do not correct errors.
Make quantum subroutines as short (“shallow”) as possible. Combine with classical processing.
Estimate result from statistical inference of noisy output. Use error mitigation schemes.

Classical Output
Quantum
Circuit
Criterion
Classical Program J

Quantum Output

Algorithm

Sutput Timescale to achievement: years

Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys. 94, 015004 (2022)
Variational quantum algorithms, Nature Reviews Physics 3, 625 (2021)
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Hybrid variational quantum algorithms

Among the most important Variational Quantum Algorithms are:

The Variational Quantum Eigensolver (2014).

Estimate the ground state energy of a quantum system using a parametrized representation of the
guantum state. Holds great promise for the simulation of molecules and materials.

The Quantum Approximate Optimization Algorithms (2014).

Finds an approximate solution to a discrete unconstrained optimization problem. It is a digital
version of the qguantum annealing process. Many applications in industrial processes,
transportation, climate, medicine, etc.

The Quantum Variational Dynamics (2017).

Estimate the time evolution of a quantum state governed by a given Hamiltonian, using a
parametrized representation of the state.
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https://arxiv.org/abs/2111.05176
https://arxiv.org/abs/2306.09198
https://arxiv.org/abs/1611.09301

Outline

General introduction

A short overview of qguantum mechanics

The paradigm of digital quantum computing

Universal quantum gates and the Solovay-Kitaev theorem
Deutsch and Deutsch-Jozsa algorithms

Shor’s factoring algorithm

Grover’s search algorithm

Overview of other algorithms
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The theory of open quantum systems and noisy guantum channels
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. Errors and quantum error correction
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. Fault-tolerant quantum error correction
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. Hybrid quantum algorithms: the variational quantum eigensolver
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. Hybrid quantum algorithms: the quantum approximate optimization algorithm
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. Hybrid quantum algorithms: the variational quantum dynamics simulation

15. Current challenges in quantum computing: an outlook.
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